

GEORGIAN MEDICAL NEWS

ISSN 1512-0112

No 2 (299) Февраль 2020

ТБИЛИСИ - NEW YORK

ЕЖЕМЕСЯЧНЫЙ НАУЧНЫЙ ЖУРНАЛ

Медицинские новости Грузии
საქართველოს სამედიცინო სიახლები

GEORGIAN MEDICAL NEWS

№ 2 (299) 2020

Published in cooperation with and under the patronage
of the Tbilisi State Medical University

Издается в сотрудничестве и под патронажем
Тбилисского государственного медицинского университета

გამოიცემა თბილისის სახელმწიფო სამედიცინო უნივერსიტეტის
თანამშრომლობითა და მისი პატრონაჟით

ЕЖЕМЕСЯЧНЫЙ НАУЧНЫЙ ЖУРНАЛ
ТБИЛИСИ - НЬЮ-ЙОРК

GMN: Georgian Medical News is peer-reviewed, published monthly journal committed to promoting the science and art of medicine and the betterment of public health, published by the GMN Editorial Board and The International Academy of Sciences, Education, Industry and Arts (U.S.A.) since 1994. **GMN** carries original scientific articles on medicine, biology and pharmacy, which are of experimental, theoretical and practical character; publishes original research, reviews, commentaries, editorials, essays, medical news, and correspondence in English and Russian.

GMN is indexed in MEDLINE, SCOPUS, PubMed and VINITI Russian Academy of Sciences. The full text content is available through EBSCO databases.

GMN: Медицинские новости Грузии - ежемесячный рецензируемый научный журнал, издаётся Редакционной коллегией и Международной академией наук, образования, искусств и естествознания (IASEIA) США с 1994 года на русском и английском языках в целях поддержки медицинской науки и улучшения здравоохранения. В журнале публикуются оригинальные научные статьи в области медицины, биологии и фармации, статьи обзорного характера, научные сообщения, новости медицины и здравоохранения.

Журнал индексируется в MEDLINE, отражён в базе данных SCOPUS, PubMed и ВИНИТИ РАН. Полнотекстовые статьи журнала доступны через БД EBSCO.

GMN: Georgian Medical News – საქართველოს სამედიცინო სიახლეები – არის უოველთვიური სამეცნიერო სამედიცინო რევიუზირებადი ჟურნალი, გამოიცემა 1994 წლიდან, წარმოადგენს სარედაქციო კოლეგიისა და აშშ-ის მეცნიერების, განათლების, ინდუსტრიის, ხელოვნებისა და ბუნებისმეტყველების საერთაშორისო აკადემიის ერთობლივ გამოცემას. GMN-ში რუსულ და ინგლისურ ენებზე ქვეყნება ექსპერიმენტული, თეორიული და პრაქტიკული ხასიათის ორიგინალური სამეცნიერო სტატიები მდიცინის, ბიოლოგიისა და ფარმაციის სფეროში, მიმოხილვითი ხასიათის სტატიები.

ჟურნალი ინდექსირებულია MEDLINE-ის საერთაშორისო სისტემაში, ასახულია SCOPUS-ის, PubMed-ის და ВИНИТИ РАН-ის მონაცემთა ბაზებში. სტატიების სრული ტექსტი ხელმისაწვდომია EBSCO-ს მონაცემთა ბაზებიდან.

МЕДИЦИНСКИЕ НОВОСТИ ГРУЗИИ

Ежемесячный совместный грузино-американский научный электронно-печатный журнал
Агентства медицинской информации Ассоциации деловой прессы Грузии,
Академии медицинских наук Грузии, Международной академии наук, индустрии,
образования и искусств США.
Издается с 1994 г., распространяется в СНГ, ЕС и США

ГЛАВНЫЙ РЕДАКТОР

Николай Пирцхалаяшвили

НАУЧНЫЙ РЕДАКТОР

Елене Гиоргадзе

ЗАМЕСТИТЕЛЬ ГЛАВНОГО РЕДАКТОРА

Нино Микаберидзе

НАУЧНО-РЕДАКЦИОННЫЙ СОВЕТ

Зураб Вадачкория - председатель Научно-редакционного совета

Михаил Бахмутский (США), Александр Геннинг (Германия), Амиран Гамкрелидзе (Грузия),
Константин Кипиани (Грузия), Георгий Камкамидзе (Грузия),
Паата Куртанидзе (Грузия), Вахтанг Масхулия (Грузия), Тамара Микаберидзе (Грузия),
Тенгиз Ризнис (США), Реваз Сепиашвили (Грузия), Дэвид Элуа (США)

НАУЧНО-РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Константин Кипиани - председатель Научно-редакционной коллегии

Архимандрит Адам - Вахтанг Ахаладзе, Амиран Антадзе, Нелли Антелава, Тенгиз Асатиани,
Гия Берадзе, Рима Бериашвили, Лео Бокерия, Отар Герзмава, Лиана Гогиашвили, Нодар Гогебашвили,
Николай Гонгадзе, Лия Дваладзе, Манана Жвания, Ирина Квачадзе, Нана Квирквелия,
Зураб Кеванишвили, Гурам Кикнадзе, Теймураз Лежава, Нодар Ломидзе, Джанлуиджи Мелотти,
Марина Мамаладзе, Караман Пагава, Мамука Пирцхалаяшвили, Анна Рехвиашвили, Мака
Сологашвили, Рамаз Хецуриани, Рудольф Хохенфеллер, Кахабер Челидзе, Тинатин Чиковани,
Арчил Чхотуа, Рамаз Шенгелия, Кетеван Эбралидзе

Website:

www.geomednews.org

The International Academy of Sciences, Education, Industry & Arts. P.O.Box 390177,
Mountain View, CA, 94039-0177, USA. Tel/Fax: (650) 967-4733

Версия: печатная. **Цена:** свободная.

Условия подписки: подписка принимается на 6 и 12 месяцев.

По вопросам подписки обращаться по тел.: 293 66 78.

Контактный адрес: Грузия, 0177, Тбилиси, ул. Асатиани 7, IV этаж, комната 408
тел.: 995(32) 254 24 91, 5(55) 75 65 99

Fax: +995(32) 253 70 58, e-mail: ninomikaber@geomednews.com; nikopir@geomednews.com

По вопросам размещения рекламы обращаться по тел.: 5(99) 97 95 93

© 2001. Ассоциация деловой прессы Грузии

© 2001. The International Academy of Sciences,
Education, Industry & Arts (USA)

GEORGIAN MEDICAL NEWS

Monthly Georgia-US joint scientific journal published both in electronic and paper formats of the Agency of Medical Information of the Georgian Association of Business Press; Georgian Academy of Medical Sciences; International Academy of Sciences, Education, Industry and Arts (USA).

Published since 1994. Distributed in NIS, EU and USA.

EDITOR IN CHIEF

Nicholas Pirtskhalaishvili

SCIENTIFIC EDITOR

Elene Giorgadze

DEPUTY CHIEF EDITOR

Nino Mikaberidze

SCIENTIFIC EDITORIAL COUNCIL

Zurab Vadachkoria - Head of Editorial council

Michael Bakhmutsky (USA), Alexander Gënning (Germany),

Amiran Gamkrelidze (Georgia), David Elua (USA),

Konstantin Kipiani (Georgia), Giorgi Kamkamidze (Georgia), Paata Kurtanidze (Georgia),

Vakhtang Maskhulia (Georgia), Tamara Mikaberidze (Georgia), Tengiz Riznis (USA),

Revaz Sepiashvili (Georgia)

SCIENTIFIC EDITORIAL BOARD

Konstantin Kipiani - Head of Editorial board

Archimandrite Adam - Vakhtang Akhaladze, Amiran Antadze, Nelly Antelava,

Tengiz Asatiani, Gia Beradze, Rima Beriashvili, Leo Bokeria, Kakhaber Chelidze,

Tinatin Chikovani, Archil Chkhhotua, Lia Dvaladze, Ketevan Ebralidze, Otar Gerzmava,

Liana Gogiashvili, Nodar Gogebashvili, Nicholas Gongadze, Rudolf Hohenfellner,

Zurab Kevanishvili, Ramaz Khetsuriani, Guram Kiknadze, Irina Kvachadze, Nana Kvirkvelia,

Teymuraz Lezhava, Nodar Lomidze, Marina Mamaladze, Gianluigi Melotti, Kharaman Pagava,

Mamuka Pirtskhalaishvili, Anna Rekhviashvili, Maka Sologhashvili,

Ramaz Shengelia, Manana Zhvania

CONTACT ADDRESS IN TBILISI

GMN Editorial Board
7 Asatiani Street, 4th Floor
Tbilisi, Georgia 0177

Phone: 995 (32) 254-24-91
995 (32) 253-70-58
Fax: 995 (32) 253-70-58

CONTACT ADDRESS IN NEW YORK

NINITEX INTERNATIONAL, INC.
3 PINE DRIVE SOUTH
ROSLYN, NY 11576 U.S.A.

Phone: +1 (917) 327-7732

WEBSITE

www.geomednews.org

К СВЕДЕНИЮ АВТОРОВ!

При направлении статьи в редакцию необходимо соблюдать следующие правила:

1. Статья должна быть представлена в двух экземплярах, на русском или английском языках, напечатанная через **полтора интервала на одной стороне стандартного листа с шириной левого поля в три сантиметра**. Используемый компьютерный шрифт для текста на русском и английском языках - **Times New Roman (Кириллица)**, для текста на грузинском языке следует использовать **AcadNusx**. Размер шрифта - **12**. К рукописи, напечатанной на компьютере, должен быть приложен CD со статьей.

2. Размер статьи должен быть не менее десяти и не более двадцати страниц машинописи, включая указатель литературы и резюме на английском, русском и грузинском языках.

3. В статье должны быть освещены актуальность данного материала, методы и результаты исследования и их обсуждение.

При представлении в печать научных экспериментальных работ авторы должны указывать вид и количество экспериментальных животных, применяющиеся методы обезболивания и усыпления (в ходе острых опытов).

4. К статье должны быть приложены краткое (на полстраницы) резюме на английском, русском и грузинском языках (включающее следующие разделы: цель исследования, материал и методы, результаты и заключение) и список ключевых слов (key words).

5. Таблицы необходимо представлять в печатной форме. Фотокопии не принимаются. **Все цифровые, итоговые и процентные данные в таблицах должны соответствовать таковым в тексте статьи.** Таблицы и графики должны быть озаглавлены.

6. Фотографии должны быть контрастными, фотокопии с рентгенограмм - в позитивном изображении. Рисунки, чертежи и диаграммы следует озаглавить, пронумеровать и вставить в соответствующее место текста **в tiff формате**.

В подписях к микрофотографиям следует указывать степень увеличения через окуляр или объектив и метод окраски или импрегнации срезов.

7. Фамилии отечественных авторов приводятся в оригинальной транскрипции.

8. При оформлении и направлении статей в журнал МНГ просим авторов соблюдать правила, изложенные в «Единых требованиях к рукописям, представляемым в биомедицинские журналы», принятых Международным комитетом редакторов медицинских журналов - <http://www.spinesurgery.ru/files/publish.pdf> и http://www.nlm.nih.gov/bsd/uniform_requirements.html В конце каждой оригинальной статьи приводится библиографический список. В список литературы включаются все материалы, на которые имеются ссылки в тексте. Список составляется в алфавитном порядке и нумеруется. Литературный источник приводится на языке оригинала. В списке литературы сначала приводятся работы, написанные знаками грузинского алфавита, затем кириллицей и латиницей. Ссылки на цитируемые работы в тексте статьи даются в квадратных скобках в виде номера, соответствующего номеру данной работы в списке литературы. Большинство цитированных источников должны быть за последние 5-7 лет.

9. Для получения права на публикацию статья должна иметь от руководителя работы или учреждения визу и сопроводительное отношение, написанные или напечатанные на бланке и заверенные подписью и печатью.

10. В конце статьи должны быть подписи всех авторов, полностью приведены их фамилии, имена и отчества, указаны служебный и домашний номера телефонов и адреса или иные координаты. Количество авторов (соавторов) не должно превышать пяти человек.

11. Редакция оставляет за собой право сокращать и исправлять статьи. Корректура авторам не высылается, вся работа и сверка проводится по авторскому оригиналу.

12. Недопустимо направление в редакцию работ, представленных к печати в иных издательствах или опубликованных в других изданиях.

При нарушении указанных правил статьи не рассматриваются.

REQUIREMENTS

Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or computer-printed on a single side of standard typing paper, with the left margin of 3 centimeters width, and 1.5 spacing between the lines, typeface - **Times New Roman (Cyrillic)**, print size - **12** (referring to Georgian and Russian materials). With computer-printed texts please enclose a CD carrying the same file titled with Latin symbols.

2. Size of the article, including index and resume in English, Russian and Georgian languages must be at least 10 pages and not exceed the limit of 20 pages of typed or computer-printed text.

3. Submitted material must include a coverage of a topical subject, research methods, results, and review.

Authors of the scientific-research works must indicate the number of experimental biological species drawn in, list the employed methods of anesthetization and soporific means used during acute tests.

4. Articles must have a short (half page) abstract in English, Russian and Georgian (including the following sections: aim of study, material and methods, results and conclusions) and a list of key words.

5. Tables must be presented in an original typed or computer-printed form, instead of a photocopied version. **Numbers, totals, percentile data on the tables must coincide with those in the texts of the articles.** Tables and graphs must be headed.

6. Photographs are required to be contrasted and must be submitted with doubles. Please number each photograph with a pencil on its back, indicate author's name, title of the article (short version), and mark out its top and bottom parts. Drawings must be accurate, drafts and diagrams drawn in Indian ink (or black ink). Photocopies of the X-ray photographs must be presented in a positive image in **tiff format**.

Accurately numbered subtitles for each illustration must be listed on a separate sheet of paper. In the subtitles for the microphotographs please indicate the ocular and objective lens magnification power, method of coloring or impregnation of the microscopic sections (preparations).

7. Please indicate last names, first and middle initials of the native authors, present names and initials of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding number under which the author is listed in the reference materials.

8. Please follow guidance offered to authors by The International Committee of Medical Journal Editors guidance in its Uniform Requirements for Manuscripts Submitted to Biomedical Journals publication available online at: http://www.nlm.nih.gov/bsd/uniform_requirements.html
http://www.icmje.org/urm_full.pdf

In GMN style for each work cited in the text, a bibliographic reference is given, and this is located at the end of the article under the title "References". All references cited in the text must be listed. The list of references should be arranged alphabetically and then numbered. References are numbered in the text [numbers in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The bibliographic description is given in the language of publication (citations in Georgian script are followed by Cyrillic and Latin).

9. To obtain the rights of publication articles must be accompanied by a visa from the project instructor or the establishment, where the work has been performed, and a reference letter, both written or typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full names, office and home phone numbers and addresses or other non-office locations where the authors could be reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are not sent out to the authors. The entire editorial and collation work is performed according to the author's original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned Requirements are not Assigned to be Reviewed.

ავტორია საჭურადლებოდ!

რედაქტორი სტატიის წარმოდგენისას საჭიროა დავიცვათ შემდეგი წესები:

1. სტატია უნდა წარმოადგინოთ 2 ცალად, რუსულ ან ინგლისურ ენებზე, დაბეჭდილი სტანდარტული ფურცლის 1 გვერდზე, 3 სმ სიგანის მარცხენა ველისა და სტრიქონებს შორის 1,5 ინტერვალის დაცვით. გამოყენებული კომპიუტერული შრიფტი რუსულ და ინგლისურნოვან ტექსტებში - **Times New Roman (Кириллицა)**, ხოლო ქართულენოვან ტექსტში საჭიროა გამოვიყენოთ **AcadNusx**. შრიფტის ზომა – 12. სტატიას თან უნდა ახლდეს CD სტატიით.

2. სტატიის მოცულობა არ უნდა შეადგენდეს 10 გვერდზე ნაკლებს და 20 გვერდზე მეტს ლიტერატურის სის და რეზიუმების (ინგლისურ, რუსულ და ქართულ ენებზე) ჩათვლით.

3. სტატიაში საჭიროა გამუქდეს: საკითხის აქტუალობა; კვლევის მიზანი; საკვლევი მასალა და გამოყენებული მეთოდები; მიღებული შედეგები და მათი განსჯა. ექსპერიმენტული ხასიათის სტატიების წარმოდგენისას ავტორებმა უნდა მიუთითონ საექსპერიმენტო ცხოველების სახეობა და რაოდენობა; გაუტკივარებისა და დაძინების მეთოდები (მწვავე ცდების პირობებში).

4. სტატიას თან უნდა ახლდეს რეზიუმე ინგლისურ, რუსულ და ქართულ ენებზე არანაკლებ ნახევარი გვერდის მოცულობისა (სათაურის, ავტორების, დაწესებულების მითითებით და უნდა შეიცავდეს შემდეგ განყოფილებებს: მიზანი, მასალა და მეთოდები, შედეგები და დასკვნები; ტექსტუალური ნაწილი არ უნდა იყოს 15 სტრიქონზე ნაკლები) და საკვანძო სიტყვების ჩამონათვალი (key words).

5. ცხრილები საჭიროა წარმოადგინოთ ნაბეჭდი სახით. ყველა ციფრული, შემაჯამებელი და პროცენტული მონაცემები უნდა შეესაბამებოდეს ტექსტში მოყვანილს.

6. ფოტოსურათები უნდა იყოს კონტრასტული; სურათები, ნახაზები, დიაგრამები - დასათაურებული, დანორმილი და სათანადო ადგილას ჩასმული. რენტგენოგრამების ფოტოსასლები წარმოადგინეთ პოზიტიური გამოსახულებით **tiff** ფორმატში. მიკროფოტოსურათების წარწერებში საჭიროა მიუთითოთ ოკულარის ან ობიექტივის საშუალებით გადიდების ხარისხი, ანათალების შედებვის ან იმპრეგნაციის მეთოდი და აღნიშნოთ სურათის ზედა და ქვედა ნაწილები.

7. სამამულო ავტორების გვარები სტატიაში აღინიშნება ინიციალების თანდართვით, უცხოურისა – უცხოური ტრანსკრიპციით.

8. სტატიას თან უნდა ახლდეს ავტორის მიერ გამოყენებული სამამულო და უცხოური შრომების ბიბლიოგრაფიული სია (ბოლო 5-8 წლის სიღრმით). ანბანური წყობით წარმოდგენილ ბიბლიოგრაფიულ სიაში მიუთითეთ ჯერ სამამულო, შემდეგ უცხოელი ავტორები (გვარი, ინიციალები, სტატიის სათაური, უურნალის დასახელება, გამოცემის ადგილი, წელი, უურნალის №, პირველი და ბოლო გვერდები). მონოგრაფიის შემთხვევაში მიუთითეთ გამოცემის წელი, ადგილი და გვერდების საერთო რაოდენობა. ტექსტში კვადრატულ ფრჩილებში უნდა მიუთითოთ ავტორის შესაბამისი N ლიტერატურის სიის მიხედვით. მიზანშეწონილია, რომ ციტირებული წყაროების უმეტესი ნაწილი იყოს 5-6 წლის სიღრმის.

9. სტატიას თან უნდა ახლდეს: ა) დაწესებულების ან სამეცნიერო ხელმძღვანელის წარდგინება, დამოწმებული ხელმოწერითა და ბეჭდით; ბ) დარგის სპეციალისტის დამოწმებული რეცეპტია, რომელშიც მითითებული იქნება საკითხის აქტუალობა, მასალის საკმაობა, მეთოდის სანდოობა, შედეგების სამეცნიერო-პრაქტიკული მნიშვნელობა.

10. სტატიის ბოლოს საჭიროა ყველა ავტორის ხელმოწერა, რომელთა რაოდენობა არ უნდა აღემატებოდეს 5-ს.

11. რედაქტორი იტოვებს უფლებას შეასწოროს სტატიას. ტექსტშე მუშაობა და შეჯერება ხდება საავტორო ორიგინალის მიხედვით.

12. დაუშვებელია რედაქტორი ისეთი სტატიის წარდგენა, რომელიც დასაბეჭდიდად წარდგენილი იყო სხვა რედაქტორიაში ან გამოქვეყნებული იყო სხვა გამოცემებში.

აღნიშნული წესების დარღვევის შემთხვევაში სტატიები არ განიხილება.

Содержание:

Крылов А.Ю., Шулутко А.М., Османов Э.Г., Гогохия Т.Р. ОПЫТ ЛЕЧЕНИЯ СЕПТИЧЕСКИХ ФЛЕГМОН НИЖНИХ КОНЕЧНОСТЕЙ ПОСЛЕ КОМБИНИРОВАННЫХ ФЛЕБЭКТОМИЙ.....	7
Тимофеев А.А., Ушко Н.А., Беридзе Б.Р., Тимофеев А.А., Ярифа М.А. ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА И ОСОБЕННОСТИ КЛИНИЧЕСКОГО ТЕЧЕНИЯ ОПУХОЛЕЙ ОКОЛОУШНЫХ СЛЮННЫХ ЖЕЛЁЗ	13
Toria N., Kikodze N., Rukhadze R., Mizandari M., Chikovani T. INFLAMMATORY BIOMARKERS IN PATIENTS WITH UNRESECTABLE PANCREATIC CANCER: A RETROSPECTIVE STUDY	21
Kulchenko N., Pashina N. ASSOCIATION OF LEUKOCYTE ACTIVITY AND DNA FRAGMENTATION IN MEN WITH NON-OBSTRUCTIVE AZOOSPERMIA.....	26
Zasieda Yu., Solomianyi R. CHRONIC PROSTATITIS THERAPY COMBINED WITH ELECTROMYOSTIMULATION-ASPIRATION, TRANSURETHRAL ELECTROPHONOPHORESIS OF PLATELET-RICH PLASMA AND TRANSRECTAL LOW-INTENSITY PULSED ULTRASOUND	29
Kikodze N., Nemsadze K., Togonidze G., Nadareishvili I. USE OF INTRAOSSSEOUS ACCESS IN PEDIATRIC EMERGENCY CARE IN GEORGIA.....	33
Lombera-Mora S., López-Facundo N.A., Layton Tovar C.F., Mendieta-Zerón H. SALIVARY CORTISOL LEVELS AND RESPONSE TO THE REMISSION INDUCTION TREATMENT IN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA.....	39
Чолокава Н.Н., Хачапуридзе Н.С., Бахтадзе С.З., Капанадзе Н.Б., Джачвадзе М.В., Хундадзе М.С. СОВРЕМЕННЫЕ АСПЕКТЫ УЧАСТИЯ ВИТАМИНА D И ЕГО МЕТАБОЛИТОВ В РАЗВИТИИ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА ДЕТЕЙ И ПОДРОСТКОВ (ОБЗОР).....	43
Лим Л.В., Кожанов В.В., Лим Н.А., Абдрахманова С.Т., Алдабекова Г.И. РЕТРОСПЕКТИВНЫЙ АНАЛИЗ СОСТОЯНИЯ ФИЗИЧЕСКОГО РАЗВИТИЯ ШКОЛЬНИКОВ ЗА ПОСЛЕДНИЕ 60 ЛЕТ ПО ДАННЫМ г. АЛМАТЫ.....	47
Савчук Т.В. СИНДРОМ ЛЕВОСТОРОННЕЙ ГИПОПЛАЗИИ СЕРДЦА: МОРФОГЕНЕЗ ПАТОМОРФОЛОГИЧЕСКИХ ТИПОВ ЛЕВОГО ЖЕЛУДОЧКА	55
Байдурин С.А., Блялова Д.Б., Бекенова Ф.К., Ткачев В.А., Ахметжанова Ш.К. ПОКАЗАТЕЛИ КАРДИОГЕМОДИНАМИКИ НАРУШЕНИЙ РИТМА У ЛИЦ ПОЖИЛОГО ВОЗРАСТА С ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ	61
Смагулова А.К., Абдрахманов А.С., Айнабекова Б.А., Бақытжанұлы А., Омралина Е.Т. ВЛИЯНИЕ АРИТМИЙ НА ТЕЧЕНИЕ И ИСХОД БЕРЕМЕННОСТИ У ЖЕНЩИН БЕЗ СТРУКТУРНОЙ ПАТОЛОГИИ СЕРДЦА.....	65
Minukhina D., Zaikina T., Koteliukh M., Titova G., Zolotaikina V. IMPACT OF PERCUTANEOUS CORONARY INTERVENTION ON MARKERS OF MATRIX DEGRADATION AND ENDOTHELIAL-DEPENDENT MEDIATORS IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION AND DIABETES MELLITUS TYPE 2.....	70
Кукес В.Г., Чебышев Н.В., Павлова Л.И., Беречикидзе И.А., Дегтяревская Т.Ю., Бадриддинова Л.Ю. КЛИНИЧЕСКИЙ СЛУЧАЙ: ПОБОЧНЫЕ ЭФФЕКТЫ СТАТИНОВ	75
Kantaria M., Buleishvili M., Kipiani Nina V., Ormotsadze G., Sanikidze T. RISK-FACTORS OF CORONARY ARTERY DISEASE (REVIEW)	78

Muratova T., Khramtsov D., Stoyanov A., Vorokhta Yu. CLINICAL EPIDEMIOLOGY OF ISCHEMIC STROKE: GLOBAL TRENDS AND REGIONAL DIFFERENCES.....	83
Petrova A., Kondratuk V., Karpenko O., Ostashevskaya T., Krasik E. THE EFFECTIVENESS OF MELATONIN IN THE COMPLEX TREATMENT OF HYPERTENSION IN PATIENTS WITH STAGE 5 CHRONIC KIDNEY DISEASE.....	87
Zaichko K., Stanislavchuk M., Zaichko N., Khomenko V. ASSOCIATIONS BETWEEN EFFICACY OF THE THERAPY AND CIRCADIAN FLUCTUATIONS OF ENDOTHELIAL NITRIC OXIDE SYNTHASE WITH TOLL-LIKE RECEPTORS 2 EXPRESSION, AND NOS3 POLYMORPHISM IN FEMALES WITH RHEUMATOID ARTHRITIS.....	93
Tsyhanyk L., Abrahamovych O., Abrahamovych U., Romaniuk O., Guta S. ANALYSIS OF THE INDEXES OF CALCIUM AND PHOSPHORUS EXCHANGE, THE MARKERS OF THEIR REGULATION AND INDEX OF THE ACTIVITY OF SYSTEMIC LUPUS ERYTHEMATOSUS	100
Chikadze N., Tevzadze M., Gachechiladze N., Porakishvili N. ELEVATED LEVELS OF NATURALLY OCCURRING AUTOANTIBODIES TO HUMAN CHORIONIC GONADOTROPIN B CORE FRAGMENT IN A FEMALE PATIENT WITH THYROID FOLLICULAR ADENOMA: CASE REPORT	106
Рынгач Н.А., Курик Е.Г., Черний Т.В., Чуйко Н.Я., Ткаченко Р.П., Баздырев В.В. ОЦЕНКА ПОТЕРЬ ИЗ-ЗА ПРЕЖДЕВРЕМЕННОЙ СМЕРТИ ОТ ЦЕРЕБРОВАСКУЛЯРНЫХ ЗАБОЛЕВАНИЙ КАК ИНСТРУМЕНТ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ	110
Wollina U., Abdel-Naser Badawy M. DIFFERENTIAL DIAGNOSIS OF ANNULAR SKIN LESIONS – A CLINICAL REVIEW	115
Яремчук О.З., Полоскова Е.А., Лихачкий П.Г., Летняк Н.Я., Кулицкая М.И., Кузьмак И.П., Лисничук Н.Е., Делибашилии Д.Г. ПРОДУКЦИЯ АКТИВНЫХ ФОРМ КИСЛОРОДА И РАЗВИТИЕ АПОПТОЗА В ЛЕЙКОЦИТАХ КРОВИ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ АНТИФОСФОЛИПИДНОМ СИНДРОМЕ	120
Блыщак Н.Б., Небесная З.М., Борис Р.Я., Кырык Х.А., Джалилова Е.А. МИКРО- И УЛЬТРАСТРУКТУРНАЯ ПЕРЕСТРОЙКА ПОДЧЕЛЮСТНОЙ ЖЕЛЕЗЫ КРЫСЫ В ПОЗДНИЕ СРОКИ ТЕЧЕНИЯ ЭКСПЕРИМЕНТАЛЬНОГО САХАРНОГО ДИАБЕТА ТИПА 2.....	125
Дубинин С.И., Зайцев А.В., Ваценко А.В., Улановская-Цыба Н.А., Передерий Н.А., Бойченко О.Н. МЕЖМИКРОБНЫЕ ВЗАИМОДЕЙСТВИЯ ОРАЛЬНОГО БИОТОПА	131
Ebralidze L., Tsrtsvadze A., Sanaia E., Berashvili D., Bakuridze A. FORMULATION OF BIODEGRADABLE POLYMERIC NANOPARTICLES CONTAINING CYTOTOXIC SUBSTANCE OF PLANT ORIGIN.....	137
Ghirdaladze D., Vatsadze T., Kirtava T. DETERMINING THE RISK OF THROMBOSIS AMONG THE PATIENTS WITH ESSENTIAL THROMBOCYTHEMIA	143
Muzashvili T., Tutisani A., Chabradze G., Beridze N., Museridze N. THE STUDY OF THE EXPRESSION OF CDH1, KI67, P53 AND HER2 IN DIFFUSE GASTRIC CARCINOMA	147
Бекбергенова Ж.Б., Дербисалина Г.А., Умбетжанова А.Т., Койков В.В. КЛЮЧЕВЫЕ ПОКАЗАТЕЛИ ЭФФЕКТИВНОСТИ КАК МЕТОД МОНИТОРИНГА СЕСТРИНСКОЙ СЛУЖБЫ.....	151
Senyuta I., Orlyuk O., Buletsa S., Ivanchulynets D. FORENSIC MEDICAL AND FORENSIC PSYCHIATRIC EXAMINATION: SOME ISSUES OF LEGAL REGULATION.....	158

THE EFFECTIVENESS OF MELATONIN IN THE COMPLEX TREATMENT OF HYPERTENSION IN PATIENTS WITH STAGE 5 CHRONIC KIDNEY DISEASE

Petrova A., Kondratuk V., Karpenko O., Ostashevskaya T., Krasuk E.

Bogomolets National Medical University, Kyiv, Ukraine

The problem of effective treatment of a patient with high cardiovascular risk is a complex task of modern medicine. Mortality from cardiovascular disease takes first place among the causes of mortality and disability worldwide, in spite of medical level. Recently, there has been a progressive increase in the number of patients with chronic kidney disease (CKD), the risk of mortality in which is much higher than in patients of the general population due to a combination of cardiovascular risk factors (hypertension, proteinuria, decrease in glomerular filtration rate, hyperuricemia, cardiac remodeling, and cardiac remodeling, etc. [23]. Arterial hypertension (AH) as a cause of fatal cardiovascular events is compared with a noninfectious epidemic, more and more often becomes resistant to AH, and its prevalence of CKD is in 2-3 times higher than in the general population [24,29].

In patients with terminal renal insufficiency, prior to initiation of renal replacement therapy, hypertension exceeds 90%. There is a close connection between hypertension and CKD: on the one hand, the development and progression of CKD lead to increased arterial hypertension (BP), on the other hand, the presence of hypertension is associated with a significant deterioration in the prognosis of patients with CKD. Therefore, the search for new approaches to optimize the treatment of hypertension in patients with CKD by studying all possible pathogenetic mechanisms of hypertension is an urgent task today [15].

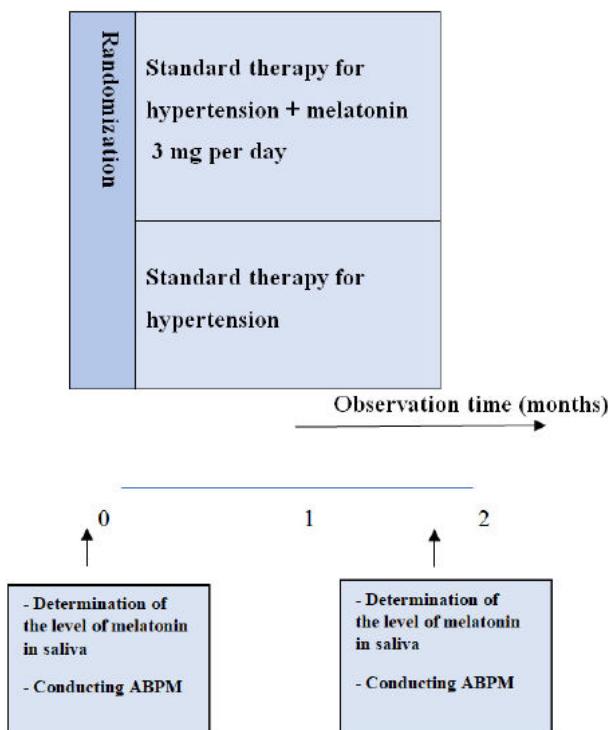
AH in a patient with CKD is a multifactorial condition in which the pathogenesis plays by the violation of the dynamic equilibrium between the pressor and depressor mechanisms of neurohumoral regulation of cardiovascular system activity in general and the regulation of blood pressure [4,8,16]. A special place in the complex system of mechanisms of neurohumoral regulation of blood pressure belongs to melatonin, which reduces the activity of the pressor mechanisms of neuroendocrine regulation, regulates the tone of blood vessels through specific M-receptors of the endothelium, limits the vasoconstrictor effects of noradrenaline, vasopressin, endothelin-I and other biologically active substances, improves the state of baroreflex regulation and exhibits powerful antioxidant properties [11].

It is well-known that in physiological conditions the secretion of melatonin by neuroendocrine epiphysis cells occurs mainly at night during sleep, coinciding with the physiological nocturnal decrease of blood pressure [2,3,17]. A number of studies show that with insufficient production of melatonin, the activation of the renin-angiotensin-aldosterone system (RAAS) occurs, decreases baroreflex activity, increases platelet aggregative ability, decreases fibrinolytic activity of the blood, increases vascular tone, which contributes to the adverse daily profile of blood pressure and the development of cardiovascular complications [5,6,9,10,25]. Unfavorable daily profiles of blood pressure (non-dipper or night-pecker) are manifestations of circadian rhythm disturbances in the body due to serum melatonin deficiency, vegetative dysfunction, RAAS hyperactivity, sodium-dependent mechanism of hypertension, hyperuricemia on various multiorgan messages in CKD [7,18,26].

The time index (TI) of hypertension (a period of elevated BP during the day) has been suggested by some authors for predicting the risk of cardiovascular events in patients [30]. An inde-

pendent predictive value of the value of pressure load regarding to the development of myocardial remodeling has been established. The speed of the morning rise (SMR) in blood pressure is an important indicator, as it is known that the morning period is considered to be a time of cardiovascular catastrophes [32-34]. This is due to the physiological activation of sympathoadrenal and renin angiotensin aldosterone system (RAAS), which leads to increased vascular tone, decreased fibrinolytic properties of blood with the development of myocardial infarction, stroke in the morning, so the speed of the morning rise (SMR) in blood pressure in the period from 4:00 to 10:00 a.m. is considered as a starting mechanism for the development of complications [20].

Nocturnal hypertension is a risk factor for cardiovascular events, but its causes have not been fully learned. Insufficient reduction (less than 10%) or increase in blood pressure at night (adverse daily blood pressure profile) is associated with a higher risk of cardiovascular events. There is excessive activation of sympathoadrenal and RAAS, increasing the aggregation capacity of platelets, decreases fibrinolytic activity of the blood, increases vascular tone, which contributes to the development of cardiovascular complications in such patients at night and early in the morning on the background of insufficient production of melatonin by the epiphysis and low concentration of hormones in the blood [19,21,22].


It is believed that changes in blood pressure at night are more important and informative in predicting the development of cardiovascular complications than blood pressure in the daytime [27]. It was found that with an increase of systolic blood pressure (SBP) at night to 10 mm Hg. mortality risk increased to 21% [31] during conduction of the Dublin Outcome Study. In the analysis of the degree of nocturnal decrease in blood pressure and the nature of the distribution of the diurnal profile, it was found that the patients of the control group were characterized by half the number of people with physiological distribution of the BP and a moderate increase of people with unfavorable types of diurnal profile. The non-prognostic types of diurnal profile are: non-dipper and night-peakers, because insufficient reduction of blood pressure in the night period is associated with a high incidence of stroke, more frequent development of left ventricular myocardial hypertrophy [4,13,14].

There is no consensus on targeted blood pressure and clear recommendations for the correction of hypertension in patients undergoing hemodialysis, with the exception of some ERA-EDTA and ESH-2017 reconciliation documents [28]. In addition, in dialysis patients with hypertension, the variability of blood pressure and the relationship with blood melatonin levels have not been studied sufficiently.

Objective - to study the efficacy of melatonin in the complex treatment of hypertension of patients with CKD of 5 stage with disruption of melatonin-forming function of the epiphysis (MFE).

Material and methods. The study included 60 patients of CKD at 5 stage: men - 25, women - 35, who were treated at the Kyiv Center of Nephrology and Dialysis, who had hypertension and MFE disorders.

Research design is presented on Pic. 1.

Pic. 1. Research design

The characteristics of the surveyed groups are presented in Table 1.

Patients received chronic program hemodialysis 3 times a week on a continuous basis, which was 12 h/week. The duration of the dialysis session was 240 minutes; blood flow rate — 319 ± 38 ml/min, with using bicarbonate dialysis solution. Kt/v ranged from 1,2 to 1,85. In all patients vascular access was presented by an arterio-venous fistula. The flow rate of the dialysis solution was 500 ml/min. Interdialysis weight gain was $3,3 \pm 0,3\%$ of dry weight. The level of sodium in the dialysis solution was installed according to the level of sodium in the blood in the range 136-140 mmol/l.

Office BP measurements were performed before, during and after the hemodialysis session with the analysis of systolic BP, diastolic BP, pulse BP.

Ambulatory Blood Pressure Monitoring (ABPM) was performed during the day in dialysis period using the portable BP monitor system ABPM-04, Meditech (Hungary) after pre-briefing the patient

in normal physical activity with continuous automatic BP measurement every 15 min daily and every 30 min at night.

The following indicators were analysed: average values of systolic and diastolic blood pressure of day, night, and all day, mean heart rate (HR) of day and night, circadian index (CI) of heart rate, blood pressure variability for daytime and sleep periods, degree of nocturnal decrease in blood pressure. The daily profile of BP was evaluated by the degree of nocturnal decrease of the systolic BP and the diastolic BP with using the commonly used criteria for determining the two-phase rhythm [12].

Measurement index and time index were considered for the study of high BP load indices. The daily rhythm of BP was evaluated on the basis of the determination of nocturnal BP decrease or the daily index (DI) of BP. DI of BP was calculated as the difference between the average values of BP during the periods of wakefulness and sleep.

We used the speed of the morning rise (SMR) in BP to characterize the morning dynamics of the BP, separately for systolic and diastolic BP (RMR BPs and RMR BPd).

A characteristic of the daily profile of BP was conducted according to the degree of reduction of systolic BP (SBP) at night. So patients with sufficient reduction (by 10-20%) were classified as dippers, with insufficient reduction (<10%) - non-dippers, and over-dipper - with excessive reduction (>20%), with nocturnal hypertension - night-peakers .

Verification of the diagnosis, determination of stage and degree of hypertension were performed according to the recommended criteria of 2018 by the European Society for the study of hypertension (ESH) / European Society of Cardiologists (ESC) [1].

Exclusion criteria: Alcohol addiction; excessive consumption of drinks with caffeine (equivalent to >3 cups of coffee per day); use of non-steroidal anti-inflammatory drugs; malignant neoplasms; obesity; treatment with hemodialysis sessions less than 3 times a week (less than 12 hours); Kt/V <1.2 ; mental disorders; concomitant pathology: endocrinological diseases, rheumatological diseases, myocardial infarction, acute damage of cerebral circulation; severe anemia.

The concentration of melatonin was determined by immunosorbent method with using a commercial set: Human MS (Melatonin Sulfate) ELISA Kit, Elabscience. Capture was conducted in the daytime at 16:00 and night time from 2:00 to 4:00, with a minimum lighting of 30 lx. Non-stimulated saliva was used, which was collected into capsule like Eppendorf in a volume of 1 ml, which was immediately frozen and stored at -20°C . The reference value of melatonin in saliva during the day was <4.9 pg/ml, and at night 52.3-149 pg/ml. Patients in the main group received standard 3 mg of melatonin for standard antihypertensive therapy, which was taken once daily at 22:00.

Table 1. Clinical and laboratory characteristics of the examined persons

Indicator	Main group, n=30	Comparison group, n=30
Men, people, %	12 (40,0%)	13 (43,0%)
Women, people, %	18 (60,0%)	17 (57,0%)
Age, years	$48,4 \pm 11,6$	$50,5 \pm 17,2$
Duration of hypertension, years	$9,3 \pm 3,09$	$8,08 \pm 2,88$
Dialysis experience, months	$101,25 \pm 58,12$	$105,77 \pm 54,3$
Body mass index, kg/m ²	$23,7 \pm 4,8$	$23,8 \pm 4,1$
Albumin, g/l	$41,5 \pm 4,2$	$40,2 \pm 3,6$
Total cholesterol, mmol/l	$5,0 \pm 0,9$	$5,2 \pm 1,3$
Hemoglobin, g/l	$99,8 \pm 18,4$	$101,8 \pm 19,0$

Statistical analysis of the obtained data was performed by using Statistica SPSS 12.0 for Windows. In the normal distribution, the data are presented as average \pm standard deviation, in other cases - as the median [25-75 percentiles]. Pearson's correlation coefficient was used to assess the significance of inter-group differences. P is assumed to be 0.05 considering testing of hypotheses for the critical level of significance. Spearman's rank correlation was used to assess the degree of correlation of quantitative traits. The study was conducted in accordance with the principles of bioethics.

Results and discussion. The patients of the main and control group were similarly compared by age, sex, disease experience, standard dialysis and antihypertensive therapy, violation of MFE.

Analyzing the incidence of MFE disorders in patients with stage 5 CKD treated with GD and practically healthy individuals, it draws attention to significantly lower rates of MT, both in the daytime and at night in patients. Thus, in patients with terminal renal failure compared with the control group, the level of MT in the daytime was lower by 52,4% ($p<0,001$), and more significantly in the night period by 82,6% ($p<0,001$).

In conducting ABPM in the examined patients, the average night and day indicators of SBP, DBP, time index, pressure variability significantly exceeded the normal values, which are presented in Table 2.

Patients of both groups can be attributed to Non-dipper according to the daily index of SBP and DBP, their number was 90% and the group "Night-peakers" was 10% of pa-

Table 2. ABPM indicators in the surveyed groups at the start of the study

Indicators	The main group, n=30	Comparison group, n=30	norm
Daytime			
Average SBP (mmHg)	174 \pm 19,94	172 \pm 18,73	100-135
Average DBP (mmHg)	91,54 \pm 1,619	92,51 \pm 1,917	60-85
TI SBP (%)	90 [60-90]	90 [60 -90]	<15
TI DBP (%)	80 [50-80]	80 [50 -80]	<15
Variability of SBP (mm Hg)	18	17	<15
Variability of DBP (mm Hg)	13	12	<15
Night time			
Average SBP (mmHg)	183 \pm 15,46	180 \pm 14,96	85-120
Average DBP (mmHg)	104,3 \pm 4,6	99 \pm 4,83	48-70
TI SBP (%)	100 [100 -100]	100 [100 -100]	<15
TI DBP (%)	100 [70 -100]	100 [70 -100]	<15
Variability of SBP (mm Hg)	20	19	<14
Variability of DBP (mm Hg)	16	15	<12
Morning dynamics			
SMR of SBP (mmHg)	25,7 \pm 10,8	22,9 \pm 11,3	<10
SMR of DBP (mmHg)	13,8 \pm 2,6	12,9 \pm 1,7	<6

Table 3. ABPM indicators after 8 weeks of observation

Indicators	The main group, n=30	Comparison group, n=30
	After treatment	After treatment
Daytime		
Average SBP (mmHg)	152 \pm 17,48	168 \pm 17,35*
Average DBP (mmHg)	81 \pm 4,3	83,42 \pm 1,83
TI SBP (%)	80 [50 - 80]	85 [60 -90]
TI DBP (%)	70 [50 - 70]	70 [50 - 80]
Variability of SBP (mm Hg)	16	17
Variability of DBP (mm Hg)	11	12
Night time		
Average SBP (mmHg)	154 \pm 12,3	170 \pm 12,34*
Average DBP (mmHg)	97 \pm 3,8	95 \pm 2,8*
TI SBP (%)	80 [70 - 90]	92 [100 - 100]
TI DBP (%)	70 [50 -70]	85 [70 - 90]
Variability of SBP (mm Hg)	15	19
Variability of DBP (mm Hg)	12	15

notes: * - statistical significance of differences in comparing with patients of the main group ($p<0,05$)

tients. The time index of SBP and DBP at night is significantly increased, which indicates the stable nature of BP at night and is not a transitory phenomenon.

The speed of the morning rise (SMR) by SBP in the main group was $25,7 \pm 10,8$ mmHg/h, by DBP – $13,8 \pm 2,6$ mm Hg/h. The SMR in the comparison group was $22,9 \pm 11,3$ mmHg/h by SBP, and $12,9 \pm 1,7$ mmHg/h by DBP. Normal limits are significantly exceeded according to the obtained results of SMR and the SBP and the DBP. SMR of SBP and SMR of DBP exceeded the normal values in 2,5 times in the main group and in 2,3 times in the comparison group.

It was found that all high-pressure load values exceed the normal values during daytime, nighttime and in the daytime as a whole according to the results of the ABPM of the examined patients. All measurements of blood pressure during the analysis exceed the target values.

Analysis of hemodynamic parameters on the background of 2-month melatonin treatment and standard therapy revealed a decrease in the average levels of SBP and DBP, which is presented in Table 3.

Variability thresholds of SBP and DBP were recorded, with a statistically significant difference between SBP groups at night ($p < 0,05$) in the analysis of treatment results in the main group. Patients receiving melatonin were characterized by significantly ($p < 0,05$) lower variability of SBP and DBP.

A significant ($p < 0,05$) decrease of average daily systolic blood pressure (SBP) by 12% is noted in patients of the main group

, and average night systolic blood pressure (SBP) by 16% in comparative analysis of SBP in the dynamics on the background of treatment in both groups of patients. These indicators were 0.6% and 5.6% in the comparison group accordingly. The average daily diastolic blood pressure (DBP) decreased by 11.5% in the main group, compared in the comparison group by 5,6%. The average night diastolic blood pressure (DBP) decreased by 7% in the main group.

A decrease was noted in the patients of the main group ($p < 0,05$) by 11% and 12,5%, in the comparison group these indicators decreased by 5% and 12%, respectively, when analyzing the TI of average daily SBP and average daily DBP indicators during the observation period. The decrease of TI during the night period was more pronounced. The average night SBP decreased by 20% in the main group and the average night DBP decreased by 30%. There was only a decrease in the average night DBP by 10% in the comparison group.

The study found that patients in the comparison group had the speed of the morning rise (SMR) of BP in 2,1 times increased compared to the main group of patients.

There is a clear positive effect of combination therapy with melatonin on the daily average and night average decrease of SBP and DBP when compared with the previous achieved level against the background of previously received antihypertensive therapy.

A statistically significant person's growth with dipper daily profile was observed from 14,3% to 44,5% in the overall structure ($p < 0,05$) on the background of 8 weeks complex therapy

Table 4. Changes in antihypertensive therapy during the study

Number of antihypertensive drugs	At the beginning of the study		After 2 months		P
	Number of patients		Number of patients		
	Main group	Comparison group	Main group	Comparison group	
0	0	0	0	0	$p < 0,05$
1	0	0	0	0	$p < 0,05$
2	2 (6,7%)	1 (3%)	13 (43%)	1 (3%)	$p < 0,05$
3	20 (66,6%)	21 (70%)	14 (47%)	21 (70%)	$p < 0,05$
4	8 (26,7%)	8 (27%)	3 (10%)	8 (27%)	$p < 0,05$
Distribution in general					
Pharmacological group preparations					
ARBs	16	14	15	14	$p < 0,05$
ACE inhibitors	2	6	0	6	$p < 0,05$
CCB	38	29	32	38	$p < 0,05$
Central action	38	29	33	39	$p < 0,05$
Distribution in general					
The total number of prescriptions	94	97	79	97	$p < 0,05$
For 1 patient	3,1	3,2	2,6	3,2	$p < 0,05$

ARBs II – Angiotensin II receptor blockers; ACEinhibitors – angiotensin-converting-enzyme inhibitors;

CCB – Calcium channel blockers

Table 5. The level of melatonin in saliva after treatment

Time of day	The main group (n=30)		Comparison group (n=30)		Reference values pg/ml
	Before treatment	After treatment	Before treatment	After treatment	
Daytime (pg/ml)	2,8±1,2	2,7±0,4	3,1±0,3	3,1±0,6*	<4,9
Night time (pg/ml)	20,2±3,7	57,4±1,5	21,5±3,9	22,3±3,7*	52,3-149,4

notes: * - the statistical significance of differences compared to patients in the main group ($p < 0,05$)

with the addition of melatonin. On the contrary the proportion of patients with a non-dipper profile decreased from 44,5% to 27,6%, as the proportion of patients with a daily profile of night-peakear BP - from 22,4% to 4,8% ($p<0,05\%$). There is no statistically significant changes in the structure of nocturnal decrease of BP in the comparison group.

Changes in the composition and amount of antihypertensive therapy, which were revealed during the study are presented in Table 4.

Improving the daily profile and reducing BP was observed in patients of the main group during the study because of the addition of melatonin to standard therapy, which indicating a close relationship of the hormone with circadian rhythms and its effect on hypertension.

Conclusions.

1. Patients with terminal renal failure have the low levels of MT compared to healthy subjects - in the daytime was lower by 52,4% ($p<0,001$), and more significantly in the night period by 82,6% ($p<0,001$).

2. According to ABPM, patients with CKD of 5 stage were characterized by pathological changes in circadian rhythm in the form of inadequate reduction of SBP and DBP in the night hours, which has manifestations in the form of a predominance of non-dipper profile types in the overall structure of patients by reducing the number of persons with a dipper profile. The was 90% of patients with a non-dipper profile and 10% of night-peakear. TI of hypertension in patients on hemodialysis significantly exceeded the allowable limits. Thus, TI of SBP exceeded the normal indicator by 75%, TI of DBP by 65% in the daytime. The TI of SBP and TI of DBP exceeded the allowable values by 85% at night. The speed of the morning rise of SBP and DBP exceeded almost twice the reference value.

3. The changes in the degree of nocturnal decrease of BP are paying attention assessing the dynamics of the daily profile of BP on the background of treatment. Thus, the number of patients in the «non-dipper» main group decreased from 44,5% to 27,6% ($p<0,05\%$), like the proportion of patients with the «night-peakear» daily profile from 22,4% to 4,8% ($p<0,05\%$). Besides, a statistically significant person's growth with dipper daily profile of BP was observed by 30,2% on the background of addition of melatonin to the antihypertensive therapy.

4. Against the background of complex treatment, there was a decrease in the patient's need for the dose and amount of antihypertensive drugs to achieve BP targets.

5. Melatonin was well tolerated in the complex treatment of hypertension in patients with CKD of 5 stage, and there were no side effects. Some patients reported improved sleep, increased exercises tolerance.

REFERENCES

1. 2018 ESC/ESH Guidelines for the management of arterial hypertension. // European Heart Journal. 2018. 39(33): 3021–3104.
2. Agarwal R. Pro: ambulatory blood pressure should be used in all patients on hemodialysis. // Nephrol. Dial. Transplant. 2015; 30(9): 1432-1437.
3. Amaral, F.G.D.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. // Arch. Endocrinol. Metab. 2018, 62:472–479.
4. Amunts, K., and Zilles, K. Architectonic mapping of the human brain beyond brodmann. // Neuron. 2015. 88:1086–1107.
5. Baker J, Kimpinski K. Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent. // Clin Exp Pharmacol Physiol. 2018; 45(8):755-766. doi: 10.1111/1440-1681.12942.
6. Banegas JR, Ruilope LM, de la Sierra A, Vinyoles E, Gorostidi M, de la Cruz JJ, Ruiz-Hurtado G, Segura J, Rodríguez-Artalejo F, Williams B. Relationship between clinic and ambulatory blood-pressure measurements and mortality. // N Engl J Med 2018; 378:1509–1520.
7. Berlin DA, Bakker J. Starling curves and central venous pressure. // Crit Care. 2015. 16;19:55.
8. Будневский А.В., Овсянников Е.С., Филина Н.В. Роль мелатонина в патогенезе сердечно-сосудистых заболеваний. // Кардиоваскулярная терапия и профилактика. 2016;15(5):97-101. <https://doi.org/10.15829/1728-8800-2016-5-97-101>
9. Cipolla-Neto J., do Amaral F.G. Melatonin as a hormone: new physiological and clinical insights. // Endocr. Rev. 2018. 39(6): 990–1028.
10. Hardeland, R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. // Int. J. Mol. Sci. 2019. 20:1223.
11. Hardeland, R. Taxon- and Site-Specific Melatonin Catabolism. // Molecules 2017. 21:2015.
12. Hermida R.C., Smolensky M.H., Ayala D.E. et al. Ambulatory blood pressure monitoring recommendations for the diagnosis of adult hypertension, assessment of cardiovascular and other hypertension-associated risk, and attainment of therapeutic goals. // Clin. Investig. Arterioscler. 2013. 25(2):74-82.
13. Jardine A.G., Agarwal R. Con: Ambulatory blood pressure measurement in patients receiving haemodialysis: a sore arm and a waste of time? // Nephrol. Dial. Transplant. 2015; 30(9): 1438-14411.
14. K. Kario. Essential manual of 24-hour blood pressure management from morning to nocturnal hypertension. Wiley-Blackwell, London . 2015: 1-138.
15. KGIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease, Kidney International Supplements Volume 3. Issue 1. January 2013.
16. Kimura G. Hypertension and chronic kidney disease . // J.Japan.Soc.Intern.Med. 2011. 100: 784-788.
17. KondratukV. E., PetrovaA. S., KarpenkoO. V. Kharakterystyka melatoninutvoriualnoi funktsii epifiza u patsientiv z khronichnoiu khvoroboiu nyrok u terminalni stadii. Klinichna endokrynolohiia ta endokrynna khirurhiia, [S.I.]. 2019. 4:94-102, dec. ISSN 2519-2582. doi:<http://dx.doi.org/10.30978/CEES-2019-4-94>.
18. LoredoJS, NelesenR, Ancoli-IsraelS, DimsdaleJE. Sleep quality and blood pressure dipping in normal adults. // Sleep. 2004;27:1097–1103.
19. Nagai M. Sleep disorder and hypertension. // Nihon Rinsho. 2012. 70(7):1188-1194.
20. Nedogoda S.V., Smirnova V.O., Bary'kina I.N., Salasyuk A.S., Khrapova V.Yu., Palashkin R.V., Popova E.A. Vliyanie terapii preparatom melatonin na funkciyu endotelii, arterialnoe davlenie i osudistiyu zhestkost' upacientov smetabolicheskim sindromom i narusheniyam SNA. // Arterial'naya gipertenzija. 2017;23(2):150-159.
21. Pal'man A.D, Rapoport S.I. Melatonin i arterial'naya gipertoniya: ot ponimaniya patogeneza k terapeuticheskim vozmozhnostyam// Klinicheskaya mediczina. 2014. 8:14-19.
22. Pickering T.G. Could hypertension be a consequence of the 24/7 Society? The effects of sleep deprivation and shift work. T.G. Pickering. // J. Clin. Hypertens. (Greenwich). 2006. 819-822.

23. Potter, G. D. M., Skene, D. J., Arendt, J., Cade, J. E., Grant, P. J., & Hardie, L. J. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. // *Endocrine Reviews*. 2016. 37(6), 584-608.

24. Rao M. V, Qiu Y., Wang C., Bakris G. Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES). // *Am. J. Kidney Dis.* 2008. 51 (2):30-37.

25. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. // *Annals of Medicine*. 2010;42(4):276-285.

26. Rimoldi S.F., Scherrer U., Messerli F.H. Secondary arterial hypertension: when, who, and how to screen? // *Eur. Heart J.* – 2013. - Vol.35 (19):1245-1254.

27. Rosendorff C, Lackland DT, Allison M, et al. Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. // *J Am Coll Cardiol* 2015;65:1998-2038.

28. Sarafidis P.A., Persu A., Agarwal R. et al. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). // *Nephrol. Dial. Transplant* 2017;32(4):620-640.

29. Seithikurippu R. Pandi-Perumal, Ahmed S. BaHamam, Nwakile I. Ojike, et al. Melatonin and Human Cardiovascular Disease // *J Cardiovasc Pharmacol Ther* 2017 Mar 27;22(2):122-132.

30. Pickering TG, White WB. When and how to use self (home) and ambulatory blood pressure monitoring. // *J Am Soc Hypertens.* 2008 May-Jun; 2(3):119-24. doi: 10.1016/j.jash.2008.04.002 .

31. Tomoharu Ida, Tetsuro Kusaba, Hiroshi Kado, Takuya Taniuchi, Tsuguru Hatta, Satoaki Matoba, Keiichi Tamagaki. Ambulatory blood pressure monitoring-based analysis of long-term outcomes for kidney disease progression. 2019. *Scientific Reports* 9:1.

32. Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. // *Curr. Neuropharmacol.* 2017.

33. Touitou Y., Reinberg A., Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. // *Life Sciences*, 2017(173):94-106.

34. Wadei H.M., Textor S.C. The role of the kidney in regulating arterial blood pressure. // *Nat. Rev. Nephrol.* 2012. 8(10):602-609.

SUMMARY

THE EFFECTIVENESS OF MELATONIN IN THE COMPLEX TREATMENT OF HYPERTENSION IN PATIENTS WITH STAGE 5 CHRONIC KIDNEY DISEASE

Petrova A., Kondratuk V., Karpenko O., Ostashevskaya T., Krasuk E.

Bogomolets National Medical University, Kyiv, Ukraine

In recent years, there has been a progressive increase in the number of patients with chronic kidney disease (CKD), whose

mortality risk is significantly higher than in general patients, which is associated with cardiovascular risks. In patients with CKD stage 5D before the start of replacement renal therapy for hypertension exceeds 90%.

The aim - to analyze the efficacy and safety of the use of melatonin in the complex treatment of arterial hypertension (AH) in patients with CKD of 5 stage with impaired melatonin-forming function of the epiphysis (MFE).

60 people (35 women and 25 men) with a chronic kidney disease of 5 stage, which have violated MFE and AH were examined. For all patients in addition to antihypertensive therapy were prescribed the drug melatonin at a dose of 3 mg, which was taken once a day at 22:00 for 8 weeks. For all examined, before and after the course of treatment, were measured blood pressure (BP), Ambulatory Blood Pressure Monitoring (ABPM) and determination of the concentration of melatonin in the salivary immunosorbent method.

The examined patients showed a high frequency of MFE disturbance both in the daytime and at night - respectively, in 52,4% ($p<0,001$) and 82,6% ($p<0,001$). The dynamics of the diurnal BP on the background of treatment was due to changes in the degree of nocturnal decrease of BP, the number of patients in the main group with the "non-dipper" profile, decreased from 44,5% to 27,6% ($p<0,05\%$), the proportion of patients with a daily profile of BP "night-peakear" from 22,4% to 4,8% ($p<0,05\%$). Besides, a statistically significant of the number of persons with a daily profile of BP "dipper" increase in 30,2%. Against the background of complex treatment, there was a decrease in the patient's need for the dose and amount of antihypertensive drugs to achieve BP targets.

Our data show a high incidence of MFE disorders in patients with CKD stage VD, and adding to the antihypertensive therapy of the drug melatonin in patients with CKD of 5 stage is effective and safe.

Keywords: arterial hypertension, chronic kidney disease, hemodialysis, melatonin, ambulatory blood pressure monitoring.

РЕЗЮМЕ

ЭФФЕКТИВНОСТЬ МЕЛАТОНИНА В КОМПЛЕКСНОМ ЛЕЧЕНИИ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ У БОЛЬНЫХ ХРОНИЧЕСКОЙ БОЛЕЗНЬЮ ПОЧЕК VД СТАДИИ

Петрова А.С., Кондратюк В.Е., Карпенко Е.В.,
Осташевская Т.Г., Красюк Е.К.

Национальный медицинский университет имени А.А. Богоявленского, Киев, Украина

Цель исследования - анализ эффективности и безопасности применения препарата мелатонин в комплексном лечении артериальной гипертензии пациентов с хронической болезнью почек VД стадии с нарушением мелатонинобразующей функции эпифиза.

Обследовано 60 больных, 35 женщин и 25 мужчин с диагнозом хроническая болезнь почек (ХБП) VД стадии с нарушением мелатонинобразующей функции эпифиза (МФЭ) и артериальной гипертензией. Всем больным дополнительно к антигипертензивной терапии назначался препарат мелатонин в дозе 3 мг, который принимали один раз в сутки в 22:00 в течение 8 недель. Всем обследуемым, до и после курса лечения, проводилось измерение артериального давления

(АД), выполнялся суточный мониторинг АД (СМАД) под контролем концентрации мелатонина в слюне иммуноферментным методом.

У обследованных пациентов отмечалась высокая частота нарушения МФЕ как в дневное, так и в ночное время – соответственно у 52,4% (p<0,001) и 82,6% (p<0,001). Динамика суточного профиля АД на фоне проводимого лечения развивалась за счет изменения степени ночного снижения АД, количества пациентов в основной группе с профилем «non-dipper», снизилась с 44,5% до 27,6% (p<0,05), доля пациентов с суточным профилем АД «night-peakear» с 22,4% до 4,8% (p<0,05). Отмечен статистически значимый прирост числа лиц с суточным профилем АД dipper на 30,2%. У пациентов основной группы дополнительно отмечалось уменьшение дозы и количества антигипертензивных препаратов.

Полученные в результате исследования данные указывают об эффективности и безопасности добавления к антигипертензивной терапии препарата мелатонин у пациентов с ХБП VД стадии.

რეზიუმე

მედიცინის ეფექტურობა არტერიული ჰიპერტენზიის კომპლექსურ მედიცინურ მოდელის მიზანით, რომელთაც გამოყვლინდათ ეპიფოზის მედიცინის არმომებელი ფუნქციის დარღვევა და არტერიული ჰიპერტენზია. ყველა ავადმყოფს, ანტიჰიპერტენზიული თერაპიასთან ერთად, ენზენბორდა პრეპარატი მედიატონინი, დოზით 3 მგ, დღეში ერთხელ, 22 საათზე 8 კვირის განმავლობაში. ყველა გამოკვლეულს მედიცინური მოდელის კურსამდე და მის შემდეგ განესაზღვრა არტერიული წნევა, ჩაუტარდა არტერიული წნევის დღედამური მონიტორინგი მედიატონინის კონცენტრაციის კონტროლით ნერწყები იმუნოფერმენტული მეთოდით.

გამოკვლეულ პაციენტებს აღენიშნა ეპიფოზის მედიცინის არმომებელი ფუნქციის დარღვევის მაღალი სიხშირე როგორც დღის, ასევე, დამის საათებში – შესაბამისად, 52,4% (p<0,001) და 82,6% (p<0,001). არტერიული წნევის დღედამური პროფილის დინამიკა ჩატარებული მედიცინური მოდელის ფონზე გამოიხატა არტერიული წნევის დაქვეითებით დამის საათებში. ძირითად ჯგუფში პაციენტების რაოდენობა პროფილით “non-dipper” შემცირდა 44,5%-დან 27,6%-მდე (p<0,05), პაციენტებისა დღედამური პროფილით “night-peakear” – 22,4%-დან 4,8%-მდე (p<0,05. ასევე, აღინიშნა სტატისტიკურად მნიშვნელოვანი, 30,2%-იანი ზრდა პირების არტერიული წნევის დღედამური პროფილით “dipper”; ძირითადი ჯგუფის პაციენტებში აღინიშნა ანტიჰიპერტენზიული პრეპარატების დოზისა და რაოდენობის შემცირება.

კვლევის შედეგები მიუთითებს ანტიჰიპერტენზიულ თერაპიაში მედიატონინის ჩართვის ეფექტურობის და უსაფრთხობის შესახებ პაციენტებში თირკმლების V-დ სტადიის ქრონიკული დაგადებით და მედიცინის არმომებელი ფუნქციის დარღვევით.

გამოკვლეული პაციენტებს აღენიშნა ეპიფოზის მედიცინის არმომებელი ფუნქციის დარღვევის მაღალი სიხშირე როგორც დღის, ასევე, დამის საათებში – შესაბამისად, 52,4% (p<0,001) და 82,6% (p<0,001). არტერიული წნევის დღედამური პროფილის დინამიკა ჩატარებული მედიცინური მოდელის ფონზე გამოიხატა არტერიული წნევის დაქვეითებით დამის საათებში. ძირითად ჯგუფში პაციენტების რაოდენობა პროფილით “non-dipper” შემცირდა 44,5%-დან 27,6%-მდე (p<0,05), პაციენტებისა დღედამური პროფილით “night-peakear” – 22,4%-დან 4,8%-მდე (p<0,05. ასევე, აღინიშნა სტატისტიკურად მნიშვნელოვანი, 30,2%-იანი ზრდა პირების არტერიული წნევის დღედამური პროფილით “dipper”; ძირითადი ჯგუფის პაციენტებში აღინიშნა ანტიჰიპერტენზიული პრეპარატების დოზისა და რაოდენობის შემცირება.

კვლევის შედეგები მიუთითებს ანტიჰიპერტენზიულ თერაპიაში მედიატონინის ჩართვის ეფექტურობის და უსაფრთხობის შესახებ პაციენტებში თირკმლების V-დ სტადიის ქრონიკული დაგადებით და მედიცინის არმომებელი ფუნქციის დარღვევით.

ASSOCIATIONS BETWEEN EFFICACY OF THE THERAPY AND CIRCADIAN FLUCTUATIONS OF ENDOTHELIAL NITRIC OXIDE SYNTHASE WITH TOLL-LIKE RECEPTORS 2 EXPRESSION, AND NOS3 POLYMORPHISM IN FEMALES WITH RHEUMATOID ARTHRITIS

Zaichko K., Stanislavchuk M., Zaichko N., Khomenko V.

National Pirogov Memorial Medical University, Vinnytsya, Ukraine

Rheumatoid arthritis (RA) is an autoimmune polygenic disease characterized by a steadily progressing course and high resistance to treatment. Despite significant progress in understanding molecular mechanisms of RA and development on this basis new diagnostic and treatment approaches, the problem of resistance to the pharmacotherapy remains unsolved. About 40% of patients do not respond to basic disease-modifying anti-rheumatic drugs (DMARDs), 20% of which do not respond to combined therapy with use of biological agents [4,12,20].

The disturbance of circadian regulation of immune and inflammatory processes in articular tissues plays an important role

in pathogenesis of RA [14]. New principles of synchronization of glucocorticoids, non-steroidal anti-inflammatory drugs and methotrexate with circadian rhythms of production hormones (melatonin, cortisol) and cytokines, are introduced to treatment in RA patients [7,23]. Therefore, the chronobiological aspects of resistance to the therapy in patients of different age and gender requires more detailed study. From this point of view, assessment of circadian rhythm in production of endothelial nitric oxide synthase (NOS3) and toll-like receptors 2 (TLR2) which involved in the regulation of angiogenesis [19,21], osteoclastogenesis [5,27] and in Th1/Th2 system balance modulation